Molecular Hydrogen in Sports Medicine: New Therapeutic Perspectives

S. M. Ostojic

Center for Health, Exercise and Sport Sciences, Exercise Physiology Lab, Belgrade, Serbia

Abstract

In the past 2 decades, molecular hydrogen emerged as a novel therapeutic agent, with antioxidant, anti-inflammatory and anti-apoptotic effects demonstrated in plethora of animal disease models and human studies. Beneficial effects of molecular hydrogen in clinical environment are observed especially in oxidative stress-mediated diseases, such as diabetes mellitus, brain stem infarction, rheumatoid arthritis, or neurodegenerative diseases. A number of more recent studies have reported that molecular hydrogen affects cell signal transduction and acts as an alkalizing agent, with these newly identified mechanisms of action having the potential to widen its application in clinical medicine even further. In particular, hydrogen therapy may be an effective and specific innovative treatment for exercise-induced oxidative stress and sports injury, with potential for the improvement of exercise performance. This review will summarize recent research findings regarding the clinical aspects of molecular hydrogen use, emphasizing its application in the field of sports medicine.

Introduction

Hydrogen is the lightest element and the most abundant chemical substance in the universe. It is one of the main compounds of water and of all organic matter in the earth as a result of readily forming covalent compounds with most non-metallic elements. At standard temperature and pressure, hydrogen is a colorless, odorless, insipid, non-toxic, and highly combustible diatomic gas having the molecular formula H₂. Molecular hydrogen is very rare in the earth’s atmosphere (1 ppm by volume) owing to its lightness. Since its discovery by Henry Cavendish in 1766, hydrogen has been used in the manufacture of organic chemical products, fossil fuel processing and semiconductor industry [4]. However, its role in biological reactions of living organisms is less understood. In nature, H₂ is mainly produced through anaerobic metabolism by several microorganisms as a means of expelling reducing equivalents in biochemical reactions (e.g. pyruvate fermentation) [17]. Intestinal bacteria of human gut produce H₂ as a result of fermentation of unabsorbed carbohydrates via hydrogenase, with being hydrogen eliminated mainly through flatus and respiratory excretion [18,29]. H₂ has had a reputation for being a biologically inert gas, with a low capacity for reacting with most biomolecules. However, research in recent years revealed several physiological roles of hydrogen molecules in humans [42,46]. It has long been known that H₂ has a strong chemical affinity for free oxidizing radicals, such as hydroxyl radical and oxide radical ion [6]. Ohsawa et al. [41] showed that H₂ could be used as an effective antioxidant in cultured human cells. Owing to its ability to rapidly diffuse across membranes, it can reach and react with cytotoxic reactive oxygen species (ROS) and thus protect against oxidative damage. Furthermore, molecular hydrogen might selectively scavenge the hydroxyl radical, the most cytotoxic of reactive oxygen species, while preserving other ROS (e.g. nitric oxide radical, hydrogen peroxide) important in cell physiology and homeostasis [19]. This emphasizes the importance of H₂ as a subtle ROS scavenger that discriminates between deleterious and beneficial ROS [31,41]. Through antioxidant-dependent power, molecular hydrogen may demonstrate anti-inflammatory, anti-apoptotic, and anti-allergic effects [8,10,16]. Additional biological role of endogenous H₂ in the human...
Overview of the Medical Use of Hydrogen

The first reported use of hydrogen in experimental medicine took place about 40 years ago. Dole and co-workers [14] exposed hairless albino mice with squamous cell carcinoma to a hyperbaric mixture of 2.5% oxygen and 97.5% hydrogen. Marked regression of the tumors was found, leading to the possibility that hydrogen therapy might also prove to be of significance in the treatment of different medical conditions. In 1994, Abraini and colleagues [2] reported the first application of hydrogen in humans to alleviate some of the symptoms of the high-pressure nervous syndrome in deep sea divers. Since then, the effects of hydrogen have been extensively studied and documented for a plethora of experimental disease models and human diseases (for review, see Ohno and colleagues) [40]. Pronounced effects in human studies are observed especially in oxidative stress-mediated diseases, including cerebral infarction [45], liver carcinoma [26], chronic inflammation in hemodialysis patients [38], inflammatory and mitochondrial myopathies [22], metabolic syndrome [36], diabetes mellitus [24], Parkinson’s disease [61] and rheumatoid arthritis [21]. One study reported no beneficial effects of H2 in urology patients [32]. The summary of the human studies is presented in Table 1.

The hydrogen research in clinical environment is rather new, with all enlisted studies published in the past 5 years. So far, the efficacy of molecular hydrogen has been evaluated in several human diseases, with a total number of 10 papers having been published in peer-reviewed journals. While most clinical studies revealed beneficial effects of H2 on different biochemical indicators of oxidative stress and/or antioxidant capacity in serum and urine, only a few studies evaluated clinical features and/or the outcome of patients’ well-being. The majority of studies evaluated the effects of H2 following short-term administration (8 weeks or less), were open label, and had a relatively small sample size. Additionally, the quantity of H2 administered in clinical patients was not standardized and seems to be independent of the magnitude of effects. The lack of a dose-response relationship may also suggest the absence of a causal relationship. More studies are expected to elucidate many issues of H2 therapy, including dose-response curve and long-term clinical effects in a myriad of pathologies using prospective randomized controlled trials and systematic retrieval of best evidence available. This will help clinicians harness this innovative therapeutic tool for diverse medical needs.

Use of Hydrogen in Sports Medicine

The rationale for H2 use in sport is mostly due to its antioxidant properties. Due to the fact that intensive exercise results in ROS overproduction and free radical-mediated damage to tissues [51], use of a potent antioxidant such as H2 may diminish oxidative stress and ROS-related disorders (e.g., fatigue, micro-injury, inflammation, overtraining). Additionally, hydrogen-rich water exhibits a high pH that may be beneficial for exercise-induced acidosis [46], a common metabolic disturbance among physically active individuals. These studies are reviewed in detail here. In addition, a therapeutic H2 trial for sport injuries is currently in progress and exhibits favorable responses [47].

Molecular hydrogen for exercise-induced oxidative stress

ROS are generated inside the body throughout our daily lives as respiration consumes oxygen [42]. These reactive molecules are well recognized for playing a dual role as both deleterious and beneficial species. Under normal physiological conditions, ROS have important roles in cell signaling and homeostasis [19]. On the other hand, exercise-induced excessive production of ROS...
and reduced antioxidant defense systems play an important role in skeletal muscle contractile dysfunction resulting in muscle weakness and fatigue. Ongoing research continues to investigate the mechanisms by which oxidants influence skeletal muscle contractile properties, while studying interventions capable of protecting muscle from oxidant-mediated dysfunction [51]. Because of its low molecular weight, H₂ can diffuse extremely rapidly into tissue and scavenge toxic ROS [41], which makes it a model candidate for athletes suffering from harmful oxidative stress. Aoki and co-workers [5] examined the effects of H₂ on oxidative stress and muscle fatigue caused by acute exercise in 10 young male soccer players. They performed a placebo-controlled, double-blind, crossover study in athletes subjected to submaximal cycling exercise (75% of maximal oxygen uptake), maximal muscle activity (100 repetitions of maximal isokinetic knee extension) and blood sampling. The athletes consumed either 1 500 mL of hydrogen-rich water or placebo in the 24 h prior to exercise. Authors measured 8 physiological markers to estimate oxidative stress-induced muscle fatigue following acute exercise. Hydrogen-rich water significantly reduced blood lactate levels post exercise by approximately 1 mmol/L over placebo. Peak torque of placebo group significantly decreased during maximal isokinetic knee extension, suggesting muscle fatigue, while the peak torque of the hydrogen-rich water group did not decrease at an early stage. There were no significant changes in blood oxidative injury markers, such as derivatives of reactive oxidative metabolites (dROMS) and biological antioxidant power (BAB), or creatine kinase after exercise. No statistical differences were found between the subjects receiving placebo and those receiving hydrogen-rich water for mean and median power frequency of surface electromyogram, indicating no difference in the development of peripheral fatigue between interventions. Authors concluded that consumption of hydrogen-rich water would potentially prevent adverse effects associated with heavy exercise. They reported that the unknown mechanism involved in the efficacies of hydrogen-rich water for this study since H₂ did not affect the level of dROMS and BAP after exercise. A similar study by our laboratory [49] investigated in a double-blind, randomized, cross-over design whether the acute (7 days) intake of 1 L/day of hydrogen-rich water improved antioxidant status and running performance in 18 college athletes when ingested before (30 min), during (every 15 min) and after each training session (until 45 min of recovery). Hydrogen-rich water demonstrated a beneficial effect on maximal rate of perceived exertion and blood lactate levels at critical running speed (8.1 mph) during maximal exercise. Treatment had no significant effect on weight and body composition or maximal oxygen uptake in athletes. Furthermore, levels of serum total antioxidant capacity (TAC) and fasting blood glucose were not significantly affected during intervention. We concluded that hydrogen-rich water decreases the physical stress during maximal exercise but the mechanism was not identified. Lack of statistical significance for oxidative markers in both studies was likely due to the small number of participants, short duration of intake, and/or small amount of hydrogen-rich water administered. However, the results of the both performance studies may also suggest another mechanism of H₂ action, besides antioxidant, for beneficial effect in athletic environment.

Hydrogen-rich water as alkalizing agent in physically actives

Although rare in the general population, exercise-induced metabolic acidosis is a common metabolic disturbance among physically active individuals [53]. It is characterized by low pH in
Molecular hydrogen for sports injuries: a novel concept?

The acute and effective management of sports-related injuries is one of the key factors that contribute to fast recovery from injuries and return to regular training and competition in modern sports. An added insult to the injury is the greater cell damage that can occur from the tissue hypoxia and acute ROS produced at the site of the soft-tissue injury [52]. This subsequent tissue damage is often referred to as the secondary zone of injury, in contrast to the initial damage caused by the actual mechanism of injury. Since hydrogen therapy in humans seems to be beneficial for treating a plethora of ROS-related injuries and pathologies [40], it seems plausible to consider H₂ as an element in the management of sport-related injuries. In particular, molecular hydrogen attenuated oxidative stress and inflammation in patients with rheumatoid arthritis [21] and muscular diseases [22], and improved ischemia-reperfusion injury indices in patients with acute brainstem infarction [45]. Currently there is one active registered clinical trial concerning H₂ as a therapy for sports injury. The study involves the evaluation of hydrogen administered orally and topically for 2 weeks as a therapy for soft-tissue sports injuries. This is currently a Phase 2 clinical trial, with preliminary findings supporting the hypothesis that the addition of hydrogen to traditional treatment protocols is effective in the treatment of soft tissue injuries in athletes [47]. This approach will hopefully lead to more clinical trials involving hydrogen-rich formulations for sports medicine in the future [13].

Molecular Hydrogen Delivery Routes

In the past 20 years, several methods have been used to deliver molecular hydrogen to humans, with different routes presenting distinct advantages and disadvantages of application. Actually, one of the first applications of hydrogen in humans was related to the field of sports medicine, when the mixture of hydrogen, helium and oxygen (Hydra 10) was used in the deepest recorded diving (701 m) in an on-shore hyperbaric chamber [28]. Molecular hydrogen can be delivered via topical, parenteral and enteral routes of administration.

Topical and parenteral administration of hydrogen

A well-known experimental route of topical hydrogen administration is the inhalation of gaseous H₂ through a hyperbaric chamber, ventilator circuit, facemask or nasal cannula [20]. Although highly flammable, hydrogen poses no risk of explosion when present at a concentration below 4%. However, safety could be a concern, and the desired level of gaseous H₂ must be carefully monitored and maintained during application [43]. Original application of gaseous hydrogen in humans has been described in 6 male commercial divers who were investigated for neurological and psychophysiological responses during an open sea dive to 500 m [2]. Divers inhaled a hydrogen-helium-oxygen (Hydreliox) mixture containing 49% hydrogen or helium-oxygen (Heliox) mixture over a period of 30 days. Compared to the helium-oxygen mixture, hydrogen alleviated symptoms of decompression sickness and nitrogen narcosis, such as hyperbaric tremor, decrement in manual dexterity, arithmetic ability and visual choice performance. Authors concluded that gaseous hydrogen might be a useful gas for occupational diving, as it improves diver comfort as well as living and working conditions. However, tests have shown that hydrogen narcosis becomes a factor at depths of 500 meters. Besides the use of gaseous H₂ mixture in deep sea divers, no human studies have reported this route of administration in a clinical environment. Therefore, no intervention protocol currently exists for the inhalation of H₂. Other topical routes of H₂ administration (e.g. hydrogen-loaded eye drops) have been developed for animal studies only [39], with no published studies reporting topical application in humans. Ohta [43] described warm water bath protocol with dissolved H₂ as a method of incorporating H₂ into the body in...
daily life in Japan. An ongoing study on the administration of H2 for sports injury management examined the effects of the hydrogen-rich formulation applied directly to the skin above the site of the soft-tissue injury [47]. Epicutaneous application of H2 is based on the fact that hydrogen easily penetrates the skin and distributes throughout the body via blood flow reaching target organ or tissue. However, this route has not yet been scientifically examined or verified. Another problem is a tendency of H2 to escape over time from treatment medium (such as bath water), making it difficult to control the concentration of H2 administered. The next option for providing H2 is through parenteral administration, this method being tested primarily in experimental animals using injectable hydrogen saline [7]. Administration of molecular hydrogen via an injectable medium may allow the delivery of more precise concentrations of H2. Only one human study in hemodialysis patients [38] used parenteral solution, with molecular hydrogen (H2 concentration was ~0.24 mmol/L) being produced by mixing dialysate concentrates and reverse osmosis water containing dissolved H2 generated by a water electrolysis technique. Given the promising results, this bioactive hemodialysis system could offer a novel therapeutic option for parenteral application of molecular hydrogen to control uremia. On the other hand, intravenous administration of hydrogen is not applicable to the field of sports medicine, since intravenous infusions or any intravenous injection are prohibited by the World Anti-Doping Agency and could be regarded as doping [World Anti-Doping Agency: The World Anti-Doping Code – 2014 Prohibited List. International Standard (11 September 2013)]. Online at http://WADA-ama.org/Documents/World_Anti-Doping_Program/WADP-Prohibitedlist/2014/ WADA-prohibited-list-2014-EN.pdf; Accessed July 15, 2014].

Enteral administration of hydrogen

Since the inhalation of hydrogen gas and H2-saturated saline injection might be impractical in daily life, other more convenient delivery systems have been developed, with hydrogen-rich water emerging as the most popular method of enteral administration of hydrogen. In 2004, Sato and co-workers were the first to administer H2 through hydrogen-rich water to mice subjected to ischemia-reperfusion injury [54]. The first documented use of hydrogen-rich water in human studies dates back to 2008, when Kajiyama et al. administered an experimental drink produced by dissolving hydrogen gas directly into water under high pressure to patients with type 2 diabetes or impaired glucose tolerance [24]. Hydrogen-rich water has a comparable effect as H2 inhalation in terms of efficacy in providing active hydrogen in blood [37]. Hydrogen-rich water can be made using several methods: a) dissolving gaseous hydrogen in water under high pressure (~0.4 MPa); b) by electrochemical reaction of magnesium with water; and, c) through electrolysis (electrolyzed-reduced water). While up to 0.8 mmol/L of H2 can be dissolved in water under atmospheric pressure at room temperature, H2 rapidly penetrates the glass and plastic walls of any vessels [42]. About 5% of the H2 poured into a cup was lost during the 3 min [56], while aluminum containers are able to retain hydrogen gas for an extended period [55]. The primary advantages of using hydrogen-rich water as a means of delivering molecular hydrogen are that it is portable, easily administered and safe [62], with even low concentrations being sufficient to exhibit beneficial effects [41]. While several companies have presented sports drinks containing hydrogen [44], awareness should be raised regarding the variation in the H2 content across suppliers. Most products have been standardized to a hydrogen concentration of 0.55–0.65 mmol/L, whereas in research studies liquid hydrogen is usually administered at a dose of approximately 1.0 mmol/L [46]. Another novel strategy for oral administration of hydrogen is a recently patented stable oral H2-releasing tablet [33]. Although the efficacy of this tablet has not yet been proven, the effect of this portable form of hydrogen delivery appears to be promising. Marginal methods for enteral delivery of H2 include oral administration of coral calcium hybrid solution [59], α-glucosidase inhibitors [58], dietary turmeric [57], mannitol [30], and lactulose [12], which could promote the production of endogenous hydrogen through intestinal bacteria. However, the author is unaware of human studies reporting health effects of endogenously derived H2.

Adverse Effects of Molecular Hydrogen

To provide evidence of the safety of H2 application in humans, several studies assessed the possible side effects of hydrogen-rich water on clinical chemistry parameters and subjectively reported adverse events of intervention. The majority of the studies revealed no side effects of hydrogen-rich water administration in humans [21, 26, 32, 46, 48, 49, 61]. Nakao et al. [36] found minimal disturbances in liver enzymes and biochemical profiles in subjects with potential metabolic syndrome receiving up to 2L/day of hydrogen-rich water. Authors reported a clinically insignificant decrease in serum aspartate aminotransferase, alanine aminotransferase and creatinine, and elevation of serum gamma-glutamyl transferase and total bilirubin. Additionally, one in 5 subjects in this study reported adverse events such as loose stools, increased frequency of bowel movements, heartburn and headache. Ito et al. [22] reported increased mucituation frequency in all patients with mitochondrial and inflammatory myopathies receiving 1L/day of hydrogen-rich water for 12 weeks, with one subject complaining of an occasional floating sensation. These adverse events being possibly related to the H2 were all classified as mild in intensity. Abdominal adverse effects may be due to the effects of molecular hydrogen on gut peristalsis [11]. Nevertheless, molecular hydrogen is generally considered to be a safe agent for human application. Previous studies have shown that mild to moderate physical exercise and concomitant ROS generation induce favorable adaptations that increase resistance to oxidative damage [60]. It seems that exercise-induced ROS may up-regulate antioxidant defenses that limit the formation of free radicals in the mitochondria of skeletal muscle, resulting in lower base levels of ROS, increased activity of antioxidant and damage repair enzymes, and lower levels of oxidative damage [60]. Since H2 acts as a selective antioxidant, it may adversely affect this oxidative stress-related positive adaptation to exercise. However, no studies have examined the possibility of H2 for blocking the adaptive response to exercise induced by oxidative stress. Further studies are warranted to evaluate the possible hormesis-modulating effect of H2 administration in physically active subjects, including the activation of antioxidative defense mechanisms.

Open Questions of Hydrogen Use in Medicine

Molecular hydrogen has a number of advantages as a novel therapeutic agent, yet several questions need to be answered before H2 can be recognized as an acceptable clinical medicine (Table 2).
First or all, the precise mechanism of the cytoprotective effects of H\textsubscript{2} is not clear, since the primary molecular target of hydrogen remains unknown [62]. The beneficial effects of hydrogen are partly due to radical scavenging activity, yet a low dose of oral H\textsubscript{2} along with its short dwell time may not be enough to scavenge the large quantity of hydroxyl radicals that are continuously generated [3], particularly during strenuous exercise or inflammation. It also remains unknown whether the signaling regulations of gene expressions, protein-phosphorylations and/or buffering effects are directly or indirectly performed by molecular hydrogen.

Secondly, intestinal bacteria seem to produce approximately 150 mL of endogenous hydrogen gas per day [18], but the bioavailability and metabolism kinetics thereof are not fully understood. Furthermore, interaction of gut flora-derived hydrogen with exogenous H\textsubscript{2} remains unresolved. We could hypothesize that low endogenous hydrogen availability may impede cellular signaling and antioxidant defense, which address the need for H\textsubscript{2} replenishment from exogenous sources in critical circumstances (e.g. intense exercise, ischemia-reperfusion damage). Thirdly, no dose-response relationship has been developed for either form of molecular hydrogen application, although beneficial effects may be noticed even at an H\textsubscript{2} blood concentration of 8\textmu mol/L following the ingestion of hydrogen-rich water [62]. So far, there exist only a handful of studies involving human trials among a limited number of subjects. H\textsubscript{2} cannot be widely used in the clinical environment unless data are collected from well designed, randomized controlled analytical trials, preferably from more than one center or research group, assessing both the efficacy and side-effects of H\textsubscript{2} on a long-term basis. Furthermore, novel protocols for topical and parenteral application of H\textsubscript{2} should be developed for clinical application, with proven safety and portability. In particular, since other physiological gases have found a place among physically active persons as inhalable performance-enhancing agents [34,50], it seems plausible to design the hyperbaric H\textsubscript{2} inhalation protocol for athletes and evaluate its efficacy on exercise performance.

Summary

Molecular hydrogen as a medical intervention started to attract much more scientific attention after Ohsawa et al. reported prominent selective antioxidant effect of supplemental H\textsubscript{2} in *Nature Medicine* in 2007 [41]. Since then, the effects of hydrogen have been extensively evaluated in animal models and human diseases. Previous studies have shown that hydrogen exerts antioxidant, anti-apoptotic, anti-inflammatory, and cytoprotective properties that are beneficial to the cell [13]. Roughly a dozen human clinical trials demonstrated promising therapeutic effects of hydrogen, with the application in sports medicine focusing on H\textsubscript{2} as a novel ergogenic and alkalizing agent. Hydrogen delivered through H\textsubscript{2}-dissolved water seems to increase muscular performance, decrease fatigue and improve exercise-induced acidosis in athletes, but its effects are probably not due to the antioxidant properties of H\textsubscript{2}. Promising results from clinical trials involving sports injury affirm the use of H\textsubscript{2} as an anti-inflammatory and recovery aid. However, more research is needed to identify the exact mechanisms of hydrogen action, develop more practical and applicable therapeutic protocols, and validate the therapeutic potential of H\textsubscript{2} in a clinical setting.

Acknowledgements

This work was supported by the Serbian Ministry of Science (grant number 175037).

Conflict of interest: The authors have no conflict of interest to declare.

References

Dixon, mechanisms and Biological Effects. Rijeka: InTech, 2012; 135–144

Kang, additive lifespan of bone marrow multipotential stromal cells in vitro

Kamimura, cose metabolism in patients with type 2 diabetes or impaired glucose

Liu, hydrogen-enriched water for mitochondrial and inflammatory myo

Ohhta, S. Molecular hydrogen is a novel antioxidant to efficiently reduce oxidative stress with potential for the improvement of mitochondrial disease. Biochim Biophys Acta 2012a; 1826: 586–594

Ostojic SM. Molecular Hydrogen in Sports... Int J Sports Med